Publications
2024
Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications. Hu C#, Myers MT#, Zhou X, Hou Z, Lozen LL, Nam KH, Zhang Y* and Ke A*. (2024) Molecular Cell Jan 18: doi 10.1016/j.molcel.2023.12.034
2023
Snapshots of a tiny ancestral nuclease of Cas9. Hou Z, Tan R and Zhang Y. (2023) Trends Biochem Sci. 2023 Jan;48(1):9-10.
2022
Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3. Hou Z#, Hu C#., Ke A* and Zhang Y*. (2022) Current Protocols. 2022 Feb;2(2):e361. Featured on the cover!
Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Tan R#, Krueger RK#, Gramelspacher MJ, Zhou X, Xiao Y, Ke A, Hou Z* and Zhang Y*. (2022) Molecular Cell. 82(4):852-867
2020
CRISPR-Cas13 as an Antiviral Strategy for Coronavirus Disease 2019. Zhang Y. (2020) The CRISPR Journal Jun 2020.140-142.
2019
Inserting DNA with CRISPR. Hou Z and Zhang Y. (2019) Science. 365(6448):25-26.
Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems. Gramelspacher MJ, Hou Z and Zhang Y. (2019) Methods. 172:32-41.
Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using Type I CRISPR-Cas. Dolan AE#, Hou Z#, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, Freddolino PL, Ke A* and Zhang Y*. (2019) Molecular Cell. 74(5):936-950.
2018
Insights into a Mysterious CRISPR Adaptation Factor, Cas4. Hou Z and Zhang Y. (2018) Molecular Cell. 70(5):757-758.
Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis. Rousseau BA, Hou Z, Gramelspacher MJ and Zhang Y. (2018) Molecular Cell. 69(5):906-914.e4.
Before Michigan
The CRISPR-Cas9 system in Neisseria spp. Zhang Y. (2017) Pathog Dis. 75(4) Review
Naturally Occurring Off-Switches for CRISPR-Cas9. Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J, Edraki A, Shah M, Sontheimer EJ, Maxwell KL and Davidson AR (2016) Cell. 167(7):1829-1838.e9.
DNase H Activity of Neisseria meningitidis Cas9. Zhang Y* , Rajan R* , Seifert HS, Mondragón A, and Sontheimer EJ. (2015) Molecular Cell 60(2):242-55
Cascading into focus. Zhang Y and Sontheimer EJ. (2014) Science 345(6203):1452-3.
Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis. Zhang Y*, Heidrich N*, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J and Sontheimer EJ. (2013) Molecular Cell 50(4):488-503.
Efficient Genome Engineering in Human Pluripotent Stem Cells Using Cas9 from Neisseria meningitidis. Hou Z*, Zhang Y*, Propson NE, Howden SE, Chu LF, Sontheimer EJ and Thomson JA. (2013) Proc. Natl. Acad. Sci. U.S.A. 110(39):15644-9.
Determinants of RNA Binding and Translational Repression by the Bicaudal-C Regulatory Protein. Zhang Y, Park S, Blaser S and Sheets MD. (2014) J Biol Chem 289(11);7497-504.
Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. Zhang Y*, Cooke A*, Park S, Dewey CN, Wickens M and Sheets MD. (2013) RNA 19(11):1575-82.
Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. Reid CD, Zhang Y, Sheets MD and Kessler DS. (2012) Developmental Biology 368(2):231-41.
Polyribosome analysis for investigating mRNA translation in Xenopus oocytes, eggs and embryos. Sheets MD, Fritz B, Hartley RS and Zhang Y. (2010) Methods 51(1):152-6.
Spatially restricted translation of the xCR1 mRNA in Xenopus embryos. Zhang Y, Forinash KD, McGivern J, Fritz B, Dorey K and Sheets MD. (2009) Molecular and Cellular Biology 29(13):3791-802.
Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA. Zhang Y and Sheets MD. (2009) BMC Developmental Biology 28;9:7.
* Equal contribution.