Publications

2024

Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications.  Hu C#, Myers MT#, Zhou X, Hou Z, Lozen LL, Nam KH, Zhang Y* and Ke A*. (2024) Molecular Cell Jan 18: doi 10.1016/j.molcel.2023.12.034

2023

Snapshots of a tiny ancestral nuclease of Cas9.  Hou Z, Tan R and Zhang Y. (2023) Trends Biochem Sci. 2023 Jan;48(1):9-10. 

2022

Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3.  Hou Z#, Hu C#., Ke A* and Zhang Y*. (2022) Current Protocols. 2022 Feb;2(2):e361.  Featured on the cover!

Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Tan R#, Krueger RK#, Gramelspacher MJ, Zhou X, Xiao Y, Ke A, Hou Z* and Zhang Y*. (2022) Molecular Cell. 82(4):852-867

2020

CRISPR-Cas13 as an Antiviral Strategy for Coronavirus Disease 2019. Zhang Y. (2020) The CRISPR Journal Jun 2020.140-142.

2019

Inserting DNA with CRISPR.  Hou Z and Zhang Y.  (2019) Science. 365(6448):25-26.

Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems. Gramelspacher MJ, Hou Z and Zhang Y. (2019) Methods.  172:32-41.

Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using Type I CRISPR-Cas. Dolan AE#,  Hou Z#, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, Freddolino PL, Ke A* and Zhang Y*. (2019) Molecular Cell. 74(5):936-950.

2018

Insights into a Mysterious CRISPR Adaptation Factor, Cas4. Hou Z and Zhang Y. (2018) Molecular Cell. 70(5):757-758.

Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.        Rousseau BA, Hou Z, Gramelspacher MJ and Zhang Y. (2018)  Molecular Cell. 69(5):906-914.e4.


Before Michigan

The CRISPR-Cas9 system in Neisseria spp.       Zhang Y. (2017)  Pathog Dis. 75(4)  Review

Naturally Occurring Off-Switches for CRISPR-Cas9.       Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J, Edraki A, Shah M, Sontheimer EJ, Maxwell KL and Davidson AR (2016) Cell. 167(7):1829-1838.e9.

DNase H Activity of Neisseria meningitidis Cas9.        Zhang Y* , Rajan R* , Seifert HS, Mondragón A, and Sontheimer EJ.  (2015)  Molecular Cell 60(2):242-55

Cascading into focus.         Zhang Y and Sontheimer EJ. (2014) Science 345(6203):1452-3.

Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis.      Zhang Y*, Heidrich N*, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J and Sontheimer EJ. (2013)  Molecular Cell 50(4):488-503.  

Efficient Genome Engineering in Human Pluripotent Stem Cells Using Cas9 from Neisseria meningitidis.      Hou Z*, Zhang Y*, Propson NE, Howden SE, Chu LF, Sontheimer EJ and Thomson JA. (2013)  Proc. Natl. Acad. Sci. U.S.A. 110(39):15644-9.  

Determinants of RNA Binding and Translational Repression by the Bicaudal-C Regulatory Protein.        Zhang Y, Park S, Blaser S and Sheets MD. (2014) J Biol Chem 289(11);7497-504.  

Bicaudal-C spatially controls translation of vertebrate maternal mRNAs.       Zhang Y*, Cooke A*, Park S, Dewey CN, Wickens M and Sheets MD. (2013)  RNA 19(11):1575-82.  

Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer.       Reid CD, Zhang Y, Sheets MD and Kessler DS. (2012)  Developmental Biology 368(2):231-41.  

Polyribosome analysis for investigating mRNA translation in Xenopus oocytes, eggs and embryos.        Sheets MD, Fritz B, Hartley RS and Zhang Y. (2010)  Methods 51(1):152-6.

Spatially restricted translation of the xCR1 mRNA in Xenopus embryos.        Zhang Y, Forinash KD, McGivern J, Fritz B, Dorey K and Sheets MD. (2009)  Molecular and Cellular Biology 29(13):3791-802.  

Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA.         Zhang Y and Sheets MD. (2009) BMC Developmental Biology 28;9:7.  

* Equal contribution.